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Abstract

Background: Hepatic steatosis confers an increased risk of metabolic and cardiovascular disease and higher health
services use. Associations of the single nucleotide polymorphisms (SNP) PNPLA3 rs738409 and TM6SF2 rs58542926
with hepatic steatosis have recently been established. This study investigates the association between rs738409 and
rs58542926 with health services utilization in a general population.

Methods: Data of 3759 participants from Study of Health in Pomerania (SHIP), a population-based study in Germany,
were obtained. The annual number of outpatient visits, hospitalization and length of hospital stay was regressed on
rs738409 and rs58542926 and adjusted for socio-economic factors, lifestyle habits, clinical factors, and health status.

Results: Minor allele homozygous subjects of rs738409 had an increased odds of hospitalization as compared to major
allele homozygous subjects (odds ratio [OR] 1.51; 95 % confidence interval [CI], 1.02 to 2.15). Heterozygous subjects
did not differ from major allele homozygous subjects with respect to their odds of hospitalization. The three genotype
groups of rs738409 were similar with respect to the number of outpatient visits and inpatient days. Minor allele
homozygous and heterozygous subjects of rs58542926 had higher outpatient utilization (+53.04 % and +67.56 %,
p < 0.05, respectively) and inpatient days than major allele homozygous subjects.

Conclusions: After adjustment for several confounding factors, PNPLA3 rs738409 and TM6SF2 rs58542926 were
associated with the number of outpatient visits, hospitalization, and inpatient days. Further studies are warranted to
replicate our findings and to evaluate whether genetic data can be used to identify subjects with excess health
services utilization.
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Background
Despite remarkable progress in our understanding of the
genetic architecture of cardiometabolic diseases, which
account for substantial direct and indirect health care
costs, it is unclear whether genetic information is
associated with health services utilization and costs. The
speed of discovery of genetic variants for common
diseases has increased rapidly, leading to a debate how

this information might be useful to improve screening
for and stratified treatment of common disorders. One
potential application is the use of genetic data to im-
proved identification of disease susceptibility in initially
healthy individuals and to focus preventive measures on
those at the highest risk of future disease [1, 2].
Similarly, the present study builds upon this work by
investigating whether genetic data is related to health
services utilization.
Many previous studies have tried to explain variation

in health services utilization, including predictive model-
ling of health care costs and risk-adjustment models for
health insurers, and typically include socio-demographic
variables, clinical conditions or diagnoses, medication
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data and self-rated health status [3–5]. The role of
genetic data has received little attention in the area of
health services research, despite its consistent association
with morbidity in some areas. For example, a strong
association of PNPLA3 rs738409, a single nucleotide
polymorphism (SNP) in the patatin-like phospholipase
domain-containing 3 (PNPLA3) gene, with liver fat
content, fibrosis, cirrhosis and non-alcoholic fatty liver
(NAFLD)-related hepatocellular carcinoma has been
reported [6–9]. Recently, TM6SF2 rs5842926 has been
associated with liver fat fraction, severity of steatosis, and
fibrosis [10, 11].
Previous work suggests that hepatic steatosis might

lead to several comorbidities including the metabolic
syndrome [12, 13] and cardiovascular diseases [14, 15].
These conditions result from a complex interplay
between genetic and environmental factors and pose a
huge economic burden on health care systems. Conse-
quently, hepatic steatosis has also been related to in-
creased future health care costs and hospitalization [16].
Because clinical conditions associated with hepatic
steatosis are producing substantial health care costs, it is
reasonable to assume that genetic variants in the
PNPLA3 and TM6SF2 genes, as promoters of liver fat,
might be associated with health care utilization. We
assumed different mechanisms by which these SNPs
might affect health services utilization. Accordingly, we
tested whether the following mediators might, at least in
part, explain potential associations between SNPs and
health services utilization outcomes: ultrasound hepatic
steatosis, serum alanine aminotransferase, ferritin, meta-
bolic syndrome, waist circumference, body mass index,
triglycerides, high-density lipoprotein (HDL) cholesterol,
blood pressure, serum glucose, and glycated hemoglobin
(HbA1c) [17–21].

Methods
Study participants
The presented data were derived from the population-
based Study of Health in Pomerania (SHIP). The study
design has previously been described in more detail [22].
In brief, a multistage random sample was drawn from
the population aged 20 to 79 years of West Pomerania, a
north-eastern coastal region of Germany. The examina-
tions were conducted between 1997 and 2001. From the
7008 initially sampled subjects, 6265 were eligible for
the study and 4308 participated (response proportion
68.8 %). We excluded participants with positive findings
for hepatitis B surface antigen or presence of anti-
hepatitis C virus antibodies (n = 28). In addition, partici-
pants who had DNA with of insufficient genotyping
quality (n = 227); with missing data on the hepatic ultra-
sound measurement (n = 70), missing self-reports of
liver cirrhosis (n = 6), hospitalization (n = 17), smoking

(n = 19), and missing values for ferritin (n = 20), creatinine
(n = 21) and waist circumference measurements (n = 7)
had to be excluded. The analysis sample included 3759
subjects. All participants gave written informed consent
and the study was approved by the ethics committee of
the University of Greifswald. Weighting was used to adjust
for bias due to differences in responses, probabilities of
selection, and discrepancies between data from official
statistics and our samples with regard to demographic and
geographical distributions [23].

Data collection and measures
Information on socio-economic characteristics, lifestyle
habits, medication use and health services utilization
was collected by trained and certificated medical staff
during a standardized computer-assisted personal inter-
view. Number of outpatient visits was measured using
two questions: (1) Have you visited a physician (general
practitioner or specialist) in the past year? and (2) If
“yes,” how often did you visit a particular physician in
the past year? Subjects responded to a list of 18 different
types of physicians and specialists. The analyses were re-
stricted to general health services and excluded visits to
dentists. Inpatient service was measured by asking the
participants if they had been hospitalized at least once in
the past 12 months and by further probing for the num-
ber of hospitalized days during the past year if they
answered affirmatively [16].
All participants underwent an extensive medical exam-

ination including the collection of a blood samples and a
sonographic examination of the abdomen, performed by
trained and certified physicians using a 5 MHz trans-
ducer and a high resolution instrument (Vingmed VST
Gateway Santa Clara, CA). The sonographers were
unaware of the participant’s clinical and laboratory
characteristics. A hyperechogenic pattern was defined as
the presence of an ultrasonographic contrast between
hepatic and renal parenchyma [16]. Hepatic steatosis
was defined as the presence of a hyperechogenic liver
pattern.
Educational attainment was estimated by recording

years of schooling completed. Income was included as
“equalized” household income (in €), applying the
Luxembourg Income Study recommendation to divide
the household income by the square root of the number
of household members [24]. Alcohol consumption was
assessed using a beverage-specific quantity-frequency
measure [25]: number of days with alcohol consumption
(beer, wine, spirits) and average daily alcohol consump-
tion for such a day over the past month. Average daily
consumption (in grams pure ethanol per day) was
calculated by multiplying frequency and amount, using
beverage-specific standard ethanol contents [25]. Study
participants provided information about whether they
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had ever smoked cigarettes regularly (never, past only,
current). Waist circumference was measured to the
nearest 0.1 cm using an inelastic tape midway between
the lower rib margin and the iliac crest in the horizontal
plane, with the subject standing comfortably with weight
distributed evenly on both feet. We used body mass
index (BMI) ≥ 30 for obesity. Systolic and diastolic blood
pressures were measured on the right arm of rested and
seated participants using a digital blood pressure moni-
tor (HEM-705CP, Omron Corporation, Tokyo, Japan).
The second and third blood pressure measurements
were averaged and used for analysis. A non-fasting
venous blood sample was obtained from all study partic-
ipants between 07:00 AM and 04:00 PM [26] photo-
metrically (Hitachi 704 and 171, Roche, Mannheim,
Germany). Serum ferritin levels were determined by an
immunoturbidimetric assay (Cobas Micra Plus, F.
Hoffmann-La Roche Ltd). Serum low-density lipoprotein
(LDL) cholesterol and HDL cholesterol were precipitated
and measured photometrically (Boehringer). A total
cholesterol/HDL ratio ≥ 5 indicated dyslipidemia [27].
Triglycerides and glucose were determined enzymatically
using reagents from Roche Diagnostics (Hitachi 717,
Roche Diagnostics, Mannheim, Germany). Serum alanine
aminotransferase (ALT) was measured photometrically
(Hitachi 704 and 171, Roche, Mannheim, Germany) [16].
HbA1c was determined by high-performance liquid
chromatography (Bio-Rad Diamat Analyzer, Munich,
Germany). The creatinine concentration (Jaffé method)
was determined on a Hitachi 717 (Roche Diagnostics,
Mannheim, Germany). The estimated glomerular filtration
rate (eGFR) was estimated according to the MDRD-
formula and expressed in mL/min/1.73 m2 [28].
The metabolic syndrome was defined as the presence

of at least three of the following five components [29]:
(1) central obesity (waist circumference ≥94 cm in men
and ≥80 cm in women); (2) reduced HDL: non-fasting
HDL <1.03 mmol/L in men and <1.29 mmol/L in women,
drug treatment for reduced HDL is an alternate indicator
[30]; (3) elevated blood pressure: systolic ≥130 mmHg
and/or diastolic ≥85 mmHg or antihypertensive drug
treatment; (4) hypertriglyceridemia: non-fasting plasma
triglycerides ≥2.3 mmol/L or drug treatment for elevated
triglycerides [30]; (5) hyperglycemia: non-fasting glucose
level of ≥8.0 mmol/L (≥144 mg/dL) or drug treatment of
elevated glucose [30].
The definition of other comorbidities was based on

self-reported physician’s diagnosis or self-reported use of
medication. Medical history included a recall of physi-
cian’s diagnosis of a list of 15 chronic conditions includ-
ing diabetes, myocardial infarction, angina pectoris,
congestive heart failure, obesity, arthritis, osteoporosis,
chronic obstructive pulmonary disease, neurological dis-
ease (such as multiple sclerosis or Parkinson’s disease),

upper gastrointestinal disease (ulcer, hernia, reflux),
stroke, anxiety, and depression. Comorbid health status
was measured by the Functional Comorbidity Index
(FCI), which is a summary measure of comorbid diseases
selected and weighted according to their association
with physical functioning [31].

Genotyping
Genotyping was performed using the Human SNP 6.0
Array (Affymetrix, Santa Clara, CA, USA). Hybridisation
of genomic DNA was genotyped according to the manu-
facturer’s standard recommendations. Genotypes were
determined using the Birdseed2 clustering algorithm.
For quality control purposes, several control samples
where added. On the chip level, only subjects with a
genotyping rate on QC probe sets (QC call rate) of at
least 86 % were included. All remaining arrays had a
sample call rate > 92 %. Imputation of genotypes in SHIP
was performed with the software IMPUTE [32] v0.5.0
based on HapMap II CEU (rs738409) or IMPUTE v2.2.2
based on 1000Genomes v3 ALL populations reference
panel (rs58542926). Because rs738409 and rs58542926
were not directly genotyped on the array but available in
the imputed dataset, the best-guess genotypes of this
SNP were used for the subsequent analyses by assigning
the genotype having the highest probability after imput-
ation to the corresponding individual. Quality score of
imputation measured via observed by expected variance
ratio of the genotypes was 0.96 for rs738409 and 0.99 for
rs58542926, where quality scores may range from 0 to 1
and a value of 1 indicates nearly perfect imputation
quality.

Statistical analyses
Categorical data were expressed as percentages; con-
tinuous data were expressed as arithmetic mean (SD).
Annual numbers of outpatient visits and inpatient days,
income, alcohol intake and ferritin were log-transformed
and the geometric means (SD) are reported, as they
followed approximately a log-normal distribution. Since
the number of annual outpatient physician visits exhib-
ited a skewed and discrete distribution, the traditional
linear (least square) regression model was inappropriate
[33]. Therefore a negative binomial model was used to
evaluate the association of PNPLA3 rs738409 and
TM6SF2 rs5842926 with the number of outpatient visits
[33]. Transformations to rate ratios [i.e. exb(ß)] were
performed, which describe the percent change in the
outcome. The number of inpatient days among those
with hospital stay was estimated using a zero-truncated
negative binomial regression and expressed as rate ratios
[33]. We examined the relation of PNPLA3 rs738409
and TM6SF2 rs5842926 and risk of hospitalization using
a logistic regression model. Results from logistic
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regressions were expressed as odds ratio (OR), with cor-
responding 95 % confidence intervals (CI). We adjusted
regression models for variables known to be correlated
with health services use. Model 1 was adjusted for age,
sex, education, income, alcohol intake, smoking status,
and GFR. Model 2 added the FCI. Next, we investigated
whether a potential association between PNPLA3 rs738409
and TM6SF2 rs5842926 and health services utilization
might be mediated by ultrasound hepatic steatosis, serum
alanine aminotransferase, ferritin, metabolic syndrome,
waist circumference, body mass index, triglycerides, high-
density lipoprotein (HDL) cholesterol, blood pressure,
serum glucose, and HbA1c [17–21]. We therefore per-
formed models that additionally included each of these
intermediate factors (models 3 to 13 in Tables 2 and 3).
Internal validation of the models was performed using

a 10-fold cross-validation [34]. The performance of the
regression models was evaluated using Nagelkerke’s R2

[34] (all models), root mean squared error and mean
prediction error (number of outpatient visits, number of
inpatient days) [3], and the area under the receiver oper-
ating characteristics (AUC) curve (hospitalization) [34].
The AUC of models without and with SNPs were com-
pared using the method of DeLong and Clark-Pearson
for correlated data [35]. We reported the median of all
assessments of the Nagelkerke R2, mean prediction error,
and AUC across the 10 cross-validations [34]. We
performed bootstrap validation of all regression models
using 300 replications as a sensitivity analysis [36].
Because the findings of the bootstrap validation were
almost identical to those from the cross-validation, we
reported only the results from the cross-validation pro-
cedure. Bias-corrected 95 % confidence intervals (CI)
were reported [37]. Stata 13.1 SE was used for statistical
analyses (Stata Corporation, College Station, TX, USA).

Results
Socio-economic factors, lifestyle habits, clinical factors
and comorbidities by PNPLA3 rs738409 and TM6SF2
rs58542926
The socio-economic, lifestyle and clinical characteristics
according to genotypes of PNPLA3 rs738409 and TM6SF2
rs58542926 are shown in Table 1. Regarding PNPLA3
rs738409, hospitalizations during the last year and annual
number of inpatient days were higher in minor allele
homozygous subjects (GG) than in major allele homozy-
gous subjects (CC). Minor allele homozygous subjects also
revealed a higher prevalence of hepatic steatosis and
increased ALT, were older, exhibited lower waist circum-
ferences, suffered less frequently from angina pectoris and
arthritis than major allele homozygous subjects. Both
groups were similar regarding the number of annual
outpatient visits, sex, level of education, income, alcohol
intake, smoking, and other clinical variables.

Furthermore, comparing the heterozygous subjects
(CG) with major allele homozygous subjects, heterozy-
gous subjects more frequently exhibited hepatic steatosis
and increased ALT and had a lower waist circumference.
Both groups did not differ regarding the probability of
hospitalization during the last year, the annual number
of inpatient days as well as other socio-economic, life-
style, and clinical factors (Table 1). Minor allele homozy-
gous subjects (TT) of TM6SF2 rs58542926 more often
had hepatic steatosis and more annual outpatient and
inpatient days than major allele homozygous subjects
(CC). Minor allele homozygous subject also had lower
educational attainment, higher ferritin, lower LDL and
total cholesterol, and lower triglyceride levels. Heterozy-
gous subjects (CT) of TM6SF2 rs58542926 more fre-
quently hepatic steatosis, increases ALT, lower LDL
cholesterol, lower total cholesterol, and higher triglycer-
ides than major allele homozygous subjects.

Regression analyses of PNPLA3 rs738409and TM6SF2
rs58542926 with outpatient services utilization and
hospitalization
Results of regression models for the association between
PNPLA3 rs738409 and health services utilization and
hospitalization are summarized in Table 2. Logistic regres-
sion analysis revealed that minor compared to major allele
homozygous subjects had 1.51 higher odds (95 %-CI:
1.02–2.15) of hospitalization after adjustment for age, sex,
education, income, alcohol intake, smoking status, waist
circumference, and GFR (Table 2, model 1). Further
adjustment for comorbid conditions did not attenuate the
OR (Table 2, model 2). In contrast, genotype groups did
not differ with regard to the numbers of annual outpatient
and inpatient visits, after full adjustment. In addition,
heterozygous subjects did not differ from major allele
homozygous subjects regarding the annual number of
outpatient visits, odds of hospitalization, and the annual
number of inpatient days.
We assumed that the association between PNPLA3

rs738409 and health services utilization might be medi-
ated by hepatic steatosis, ALT, ferritin, the metabolic
syndrome, waist circumference, BMI, triglycerides, HDL,
systolic blood pressure, serum glucose or hbA1c (Table 3,
models 3 to 13). We found that the point estimates for
the association of PNPLA3 rs738409 with health services
utilization were largely unchanged after adjustment for
any of these hypothesized mediators (except for serum
glucose), which provides little evidence that these mea-
sured phenotypes are intermediate steps on the causal
pathway from PNPLA3 rs738409 to hospitalization.
Next, we regressed health services utilization out-

comes on TM6SF2 rs58542926 (Table 3). Heterozygous
subjects (CT) and minor homozygotes (TT) had an ap-
proximately 53 % (95 % CI: 18.3–67.6) and 68 % (95 %
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Table 1 Characteristics of study participants by PNPLA3 rs738409 and TM6SF2 rs58542926

PNPLA3 rs738409 TM6SF2 rs58542926

CC CG GG CC CT TT

N (%) 2238 (59.6 %) 1347 (35.8 %) 173 (4.6 %) 3471 (80.6 %) 580 (13.5 %) 28 (0.7 %)

Annual number of outpatient visitsa 7.5 (2.5) 7.5 (3.5) 7.5 (2.6) 4.9 (2.2) 7.3 (2.6) 7.9 (2.5)*

Hospitalization during the last year, % 14.1 14.2 19.7* 7.4 13.7 14.6

Annual number of inpatient days among subjects
with hospitalization during the last year, daysa

9.7 (2.6) 9.7 (2.3) 10.6 (2.5)* 6.9 (1.2) 9.6 (2.5) 11.1 (2.5)**

Age, years 49.91 (16.28) 49.40 (16.58) 50.00 (15.83) 49.3 (16.2) 48.7 (16.5) 47.4 (16.1)

Female, % 50.7 50.6 56.7* 50.1 54.7 74.1

School education (<10 years), % 39.1 37.7 39.1 38.4 40.3 33.3*

Equivalent household income, €a 852 (1.7) 833 (1.8) 879 (1.7) 852 (1.7) 807 (1.8) 929 (1.6)

Alcohol intake, g/da 7.3 (3.5) 7.5 (3.4) 5.9 (2.5)** 7.5 (3.5) 6.9 (3.5) 5.1 (3.9)

Regular smoking, % 29.7 32.3 28.3 30.4 31.3 25.9

Body mass index, kg/m2 27.3 (4.8) 27.1 (4.8) 26.9 (4.8) 27.3 (4.5) 27.3 (4.8) 26.2 (4.3)

Obesity, % 26.8 24.1 22.0 25.3 28.1 14.8

Waist circumference, cm 90.0 (14.0) 88.4 (13.8)** 87.3 (13.3)** 89.2 (13.9) 89.2 (14.2) 84.4 (13.1)

Systolic blood pressure, mmHg 135.6 (20.7) 135.6 (20.7) 136.2 (20.8) 132.4 (18.5) 136.0 (21.2) 134.6 (20.8)

Hypertension, % 51.9 52.8 52.6 37.0 52.9 49.1

Ferritin, μg/la 68.4 (2.7) 68.6 (2.6) 61.56 (2.58) 68.2 (2.6) 68.5 (2.7) 66.6 (3.0)

Hepatic steatosis, % 27.4 31.9** 39.9** 28.4 36.3** 44.4*

Increased ALT (>75th percentile), % 17.9 22.7** 28.3** 19.4 24.2* 29.6

GFR, ml.min.1.73 m2 79.5 (15.1) 80.0 (15.1) 79.8 (15.1) 79.5 (15.1) 80.9 (14.8) 78.8 (11.1)

High-density lipoprotein cholesterol, 1.45 (0.45) 1.46 (0.43) 1.49 (0.43) 1.45 (0.44) 1.48 (0.43) 1.50 (0.39)

Low-density cholesterol, mmol/l 3.59 (1.18) 3.54 (1.13) 3.54 (1.25) 3.59 (1.25) 3.50 (1.10)* 2.75 (1.27)**

Total cholesterol, 5.80 (1.28) 5.72 (1.19) 5.76 (1.32) 5.79 (1.25) 5.69 (1.22)** 4.82 (1.43)**

Dyslipidemia (TC/HDL-C ratio ≥ 5), % 27.8 25.8 24.3 27.6 24.0 14.8

triglycerides 1.91 (1.57) 1.80 (1.36) 1.78 (1.31) 1.89 (1.46) 1.74 (1.62)** 1.34 (1.53)**

Serum glucose 5.70 (1.87) 5.62 (1.67) 5.53 (1.76) 5.66 (1.81) 5.70 (1.81) 5.45 (1.00)

HbA1c, % 5.45 (0.97) 5.42 (0.88) 5.34 (0.84) 5.44 (0.92) 5.42 (0.99) 5.38 (0.49)

Diabetes, % 8.0 7.6 6.9 7.7 8.6 7.4

Upper gastrointestinal disease (ulcer, hernia, reflux), % 1.6 2.1 1.7 1.7 2.1 3.7

Myocardial infarction, % 3.4 3.3 3.5 3.3 3.4 3.9

Angina pectoris, % 5.0 3.4* 1.7* 3.9 5.8* 7.4

Congestive heart failure, % 12.51 10.62 14.45 22.2 12.0 11.1

Arthritis 7.2 7.3 11.6* 7.4 7.7 11.1

Osteoporosis 4.7 4.3 4.1 4.5 4.9 0

Chronic obstructive pulmonary disease, % 6.1 5.0 4.6 5.6 5.4 14.8

Multiple sclerosis or Parkinson’s disease, % 0.5 0.2 0 0.4 0.2 0

Stroke or TIA, % 2.3 1.6 1.7 2.1 1.7 0

Peripheral vascular disease, % 1.4 1.0 0.6 1.4 0 0

Degenerative disc disease, % 37.2 35.0 38.2 36.6 35.4 40.7
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CI: 28.3–134.6) higher number of annual outpatient
visits then major homozygotes after adjustment for age,
sex, education, income, alcohol, and GFR (Table 3,
model 1). Further adjustment for comorbid conditions
slightly increased effect sizes (Table 3, model 2). To
evaluate mediation, we tested whether including as-
sumed intermediate variables change the effect sizes
(Table 3, model 3 to 13). Point estimates were slightly
attenuated after adding the metabolic syndrome, waist cir-
cumference, triglycerides and serum glucose to model 1.
Likewise, TM6SF2 rs58542926 was an independent
predictor of length of hospital stay. Minor heterozygous
subjects had a 123 % (95 %-CI: 33.1–276.0) and heterozy-
gous subjects a 85 % (95 % CI: 18.9–188.8) higher number
of annual hospital days than major homozygotes (Table 3,
model 1). Inclusion of metabolic syndrome and its single
components attenuated point and variance estimates
(Table 3, models 3 to 13).

Incremental predictive power of PNPLA3 rs738409and
TM6SF2 rs58542926
To examine the incremental predictive power for predic-
tion of annual outpatient visits and correct for optimistic
prediction, we conducted cross-validation of all regres-
sion models. We computed measures of predictive per-
formance for model 2, model 2 plus each of the SNPs,
and model 2 plus both SNPs (Table 4). Adding both
SNPs to model 2 resulted in small changes in the R2

values, mean squared errors, absolute prediction error,
and AUC.

Discussion
Previous studies have reported a consistent association of
PNPLA3 rs738409 and TM6SF2 rs58542926 with hepatic
steatosis [7–11, 38, 39], which results in increased future
health care expenditures [16]. Accordingly, we hypothe-
sized that PNPLA3 rs738409 or TM6SF2 rs58542926
might be useful to identify subjects who would have
increased health services utilization. Therefore, we corre-
lated PNPLA3 rs738409 and TM6SF2 rs58542926 directly
with different measures of health services utilization in a
general population sample. We observed that the minor
allele of PNPLA3 rs738409 was associated with increased
odds of hospitalisation. Similarly, both minor allele

homozygous and heterozygous subjects of TM6SF2
rs58542926 exhibited a higher number of annual out-
patient visits and more hospital days. We also investigated
mediation by variables related to fatty liver disease and
components of the metabolic syndrome. The regression
coefficients of PNPLA3 rs738409 and TM6SF2 rs58542926
were essentially unchanged upon adjustment for measured
hepatic steatosis, ALT or ferritin but attenuated after inclu-
sion of features of the metabolic syndrome. This indicates
that components of the metabolic syndrome might be
intermediate variables on the pathway from PNPLA3
rs738409 and TM6SF2 rs58542926 to health services
utilization. Inclusion of the SNPs only marginally improved
the predictive performance of models predicting the num-
ber of outpatient visits, hospitalization, and the number of
inpatient days.
The reasons for the significant association of PNPLA3

rs738409 and TM6SF2 rs58542926 with outpatient and
inpatient services utilization even after controlling for
multiple covariables are not entirely clear. One possible
explanation is that SNPs are associated with unmeasured
phenotypes that cause health care outcomes that were
not included in our regression models. Some assess-
ments of chronic diseases were based on self-report data
from our standardized interview, which is less specific
and might result in misclassification further increasing
the likelihood of detecting false-positive association. An-
other possible explanation is that PNPLA3 rs738409 and
TM6SF2 rs58542926 is not directly responsible for the
association but is in linkage disequilibrium with another
SNP, which might have introduced genetic confounding.
As far as we know, this is the first population-based

study that uses genetic data as correlates of health ser-
vices utilization and investigates whether adding genetic
information to a predictive model of established health
services predictors improves prediction. The findings
gave some indications that individual genetic data might
be useful in screening for excess health services utili-
zation and costs. Access to health care is unrestricted in
Germany and cost of treatment is either covered by
private or statutory health insurance. Screening based on
genetic information has not been introduced in Germany.
However, for making decisions regarding genetic testing it
has to be considered that the inclusion of genotype

Table 1 Characteristics of study participants by PNPLA3 rs738409 and TM6SF2 rs58542926 (Continued)

Anxiety, % 23.5 22.9 22.0 23.2 23.0 33.3

Depression, % 12.4 12.8 17.9* 12.6 13.9 14.8

Functional Comorbidity Indexa 1.6 (1.7) 1.6 (1.6) 1.7 (1.7) 1.6 (1.6) 1.6 (1.6) 1.7 (1.6)

Entries are mean (SD) or % unless indicated differently
GFR glomerular filtration rate, TC total cholesterol; HDL High-density lipoprotein cholesterol
aGeometric mean (geometric SD)
*p < .05
**p < .01 for comparisons with CC-allele from t-test (continuous variables) or Fisher’s exact test (categorical variables)
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Table 2 Associations of PNPLA3 rs738409 with health utilization and hospitalization (n = 3759)

Reference: PNPLA3 rs738409 CC Effect on annual outpatient
visits, % Bootstrap (95 %-CI)a

Hospitalization, OR
Bootstrap (95 %-CI)

Effect on annual inpatient days,
% Bootstrap (95 %-CI)a

Model 1 (age, sex, school education, income,
alcohol intake, smoking status, GFR)

CG −3.17 (−9.00, +4.08) 1.01 (0.83, 1.21) −9.00 (−25.12, +7.10)

GG +2.93 (−12.9, +21.7) 1.51 (1.02, 2.15)* +7.38 (−22.45, +42.87)

Model 2: model 1 + Functional Comorbidity Index

CG −2.43 (−8.5, +3.5) 1.03 (0.89, 1.23) −10.31 (−23.1, +10.44)

GG +1.81 (−11.62, +18.29) 1.51 (1.01, 2.28)* +7.49 (−21.24, +48.61)

Model 3: Model 2 + hepatic steatosis

CG −2.64 (−8.89, +2.65) 1.03 (0.83, 1.23) −11.30 (−26.33, +8.15)

GG +1.98 (−9.49, +19.92) 1.54 (1.03, 2.17)* +7.51 (−23.45, +59.25)

Model 4: Model 2 + ALT

CG −2.33 (−8.82, +4.83) 1.04 (0.85, 1.26) −9.90 (−23.65, +3.81)

GG +2.84 (−9.20, +21.91) 1.56 (1.02, 2.27)* +8.80 (−22.86, 50.62)

Model 5: Model 2 + ferritin

CG −2.41 (−7.74, +5.52) 1.02 (0.85, 1.20) −11.3 (−25.02, +7.89)

GG +1.57 (−12.67, +25.28) 1.49 (1.01, 2.35)* +7.42 (−67.07, +49.20)

Model 6: Model 1 + metabolic syndrome

CG −2.45 (−8.97, +4.41) 1.03 (0.84, 1.31) −9.73 (−24.1, +10.60)

GG +4.13 (−9.85, +24.94) 1.53 (1.02, 2.28)* +6.23 (−24.49, +40.60)

Model 7: Model 1 + waist circumference

CG −2.48 (−9.04, +4.56) 1.02 (0.84, 1.23) −9.34 (−25.14, +7.67)

GG +4.18 (−9.17, +20.31) 1.51 (1.02, 2.26)* +7.29 (−22.41, +50.45)

Model 8: Model 1 + BMI

CG −2.74 (−8.65, +4.67) 1.02 (0.85, 1.22) −9.44 (−23.11, +8.88)

GG +3.31 (−14.11, +20.54) 1.51 (0.99, 2.23)* +6.75 (−28.51, +43.60)

Model 9: Model 1 + triglycerides

PNPLA3

CG −2.70 (−8.43, +5.48) 1.02 (0.87, 1.31) −7.83 (−23.36, +10.71)

GG +3.16 (−11.65, +23.22) 1.51 (1.01, 2.21)* +7.02 (+22.9, +58.96)

Model 10: Model 1 + HDL cholesterol

CG −2.83 (−9.55, +3.89) 1.005 (0.83, 1.25) −9.52 (−23.12, +7.25)

GG +3.24 (−7.22, +23.89) 1.52 (1.02, 2.22)* +7.97 (−27.34, +44.13)

Model 11: Model 1 + systolic blood pressure

CG −2.69 (−8.49, +3.44) 1.02 (0.85, 1.24) −9.03 (+26.12, +10.44)

GG +3.44 (−14.57, +19.68) 1.52 (1.03, 2.32)* +7.02 (−22.73, +43.84)

Model 12: Model 1 + serum glucose

CG −2.92 (−9.10, +4.59) 1.02 (0.83, 1.22) −9.59 (−24.54, +12.97)

GG +3.30 (+11.4, +23.1) 1.49 (1.02, 2.24)* +6.06 (−24.05, 43.55)

Model 13: Model 1 + hbA1c

CG −3.32 (−9.67, +4.24) 1.02 (0.83, 1.22) −9.20 (−23.78, +7.61)

GG +4.44 (−11.01, +26.81) 1.52 (0.96, 2.05)* +7.79 (−21.70, +41.90)

Model 1 included age, sex, school education, income, alcohol intake, smoking status, eGFR
Bias-corrected Bootstrap confidence intervals
CI confidence interval
aPercent change compared to the ‘CC-genotype’ group
*p -value < 0.05
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Table 3 Associations of TM6SF2 rs58542926 with health utilization and hospitalization (n = 3759)

Reference: TM6SF2 rs58542926 CC Effect on annual outpatient visits,
% Bootstrap (95 %-CI),a

Hospitalization, OR
Bootstrap (95 %-CI)

Effect on annual inpatient
days, % Bootstrap (95 %-CI),a

Model 1 (age, sex, school education, income,
alcohol intake, smoking status, eGFR)

CT +53.04 (+18.33, +115.29)* 1.93 (0.67, 5.03) +85.33 (+18.94, +188.78)*

TT +67.56 (+28.28, +134.59)* 1.81 (0.59, 5.08) +123.74 (+33.14, +275.97)*

Model 2: model 1 + Functional Comorbidity Index

CT +57.82 (+23.62, +113.43)* 1.96 (0.68, 5.56) +94.01 (37.83, 173.1)*

TT +69.79 (+31.60, 145.43)* 1.82 (0.72, 5.75) +133.49 (51.86, 259.0)*

Model 3: Model 2 + hepatic steatosis

CT +56.54 (+15.03, +110.21)* 1.93 (0.78, 5.44) +93.36 (+35.99, +174.93)*

TT +69.28 (+24.58, +130.01)* 1.80 (0.68, 5.10) +132.83 (+51.83, +257.1)*

Model 4: Model 2 + ALT

CT +56.51 (+19.96, +112.33)* 1.91 (0.65, 4.98) +91.50 (+40.32, +161.36)*

TT +69.65 (+31.38, 136.92)* 1.79 (0.63, 5.04) +131.08 (+53.60, 247.63)*

Model 5: Model 2 + ferritin

CT +55.75 (+21.37, +106.99)* 1.83 (0.63, 5.38) +94.00 (+37.65, +173.43)*

TT +69.09 (+31.92, +134.08)* 1.73 (0.56, 4.98) +133.47 (+52.00, +259.61)*

Model 6: Model 1 + metabolic syndrome

CT +45.21 (+7.26, +107.45)** 1.81 (0.65, 5.34) +74.58 (+13.38, +168.79)**

TT +60.48 (+14.54, 124.9)* 1.73 (0.68, 5.63) +114.92 (+30.05, +255.17)*

Model 7: Model 1 + waist circumference

CT +49.27 (7.63, +95.57)* 1.92 (0.80, 5.12) +90.50 (+32.88, +73.10)*

TT +63.27 (+23.38, +138.34)* 1.79 (0.70, 4.71) +131.9 (+47.56, 264.6)*

Model 8: Model 1 + BMI

CT +50.28 (+12.46, 106.67)* 1.92 (0.58, 5.49) +92.70 (+27.32, 191.65)*

TT +64.73 (+23.39, +119.28)* 1.80 (0.55, 5.21) +133.3 (+41.87, 283.35)*

Model 9: Model 1 + triglycerides

CT +50.08 (+15.38, +195.16)* 1.89 (0.68, 5.61) +83.47 (+16.35, +189.29)*

TT +65.92 (+23.72, +120.61)* 1.79 (0.62, 5.14) +119.17 (+29.87, 269.89)*

Model 10: Model 1 + HDL cholesterol

CT +50.69 (+15.98, +238.0)* 1.89 (0.69, 5.14) +77.12 (+11.73, +180.78)**

TT +66.26 (+26.23, +158.59)* 1.75 (0.64, 5.04) +116.1 (+27.42, +266.50)*

Model 11: Model 1 + systolic blood pressure

CT +53.16 (+22.27, +141.1)* 1.93 (0.60, 5.09) +84.63 (+18.88, +186.75)*

TT +66.64 (+30.17, 167.93)* 1.77 (0.51, 4.73) +124.11 (+33.36, +276.62)*

Model 12: Model 1 + serum glucose

CT +50.51 (+13.57, +105.38)* 1.91 (0.64, 5.50) +82.57 (+17.68, 183.2)*

TT +63.36 (+21.72, 116.9)* 1.81 (0.58, 5.47) +121.82 (+32.44, 271.50)*

Model 13: Model 1 + hbA1c

CT +53.38 (+21.00, +109.69)* 1.94 (0.82, 5.74) +85.09 (+18.75, +188.49)*

TT +67.02 (+29.44, 23.17)* 1.82 (0.72, 5.52) +122.18 (+32.83, 275.01)*

Model 1 included age, sex, school education, income, alcohol intake, smoking status, eGFR
Bias-corrected Bootstrap confidence intervals
CI confidence interval
a Percent change compared to the ‘CC-genotype’ group
*p-value < 0.01
**p-value < 0.05
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information in our multivariable models with established
predictors of health care utilization did not improve pre-
diction and an external replication of our findings needs
to be conducted to support our data.
The ethical and economic implications of genetic

screening need to be examined before any recommenda-
tions can be made [40]. False-positive screening results
can lead to additional diagnostic tests or cause unneces-
sary anxiety and thereby needless increase in health care
use [41]. It is essential that genetic screening and its
consequences are transparent and adequately under-
stood by the target population [42, 43]. A serious critical
ethical issue of genetic testing is the potential for dis-
crimination and stigmatisation of individuals and groups.
To assess genetic screening, economic evaluations need
to be performed [44].
Our study has several strengths and limitations that

need to be considered. Major strengths of this study in-
clude the sample size, the comprehensive clinical
characterization, strict quality control procedures and
standardized protocol as well as trained and certified
staff for all data acquisitions. However, due to the non-
fasting status of our participants a non-standard defin-
ition of the metabolic syndrome had to be applied [30]

and it is not clear how this could have affected our esti-
mates. Health care utilization outcomes were assessed
using questionnaire self-reports. The usual limitations of
this approach apply, especially the underreporting in
self-reports and incomplete assessment of services.
However, relative effects, which are of primary interest
in this study, may be less biased than absolute numbers.
Claims data containing the direct medical cost would
help to improve the validity of the findings. Further-
more, the study was performed in a Caucasian, Euro-
pean population. This is not clear whether the observed
findings are generalizable to other populations. Subjects
that refused to take part in the study might have been dif-
ferent from participants with regard to health services
utilization and their genetic profile, which might have in-
troduced selection bias. Another possible limitation of this
study is the imputation of SNPs and the lack of
information about the specific causes of hospitalization.

Conclusions
In conclusion, the study illustrated that genetic
information might be associated with health services
utilization. Further studies in independent cohorts are
needed to replicate our findings.

Table 4 Predictive power of models with established health utilization predictors without and with SNPs: results of the 10-fold
cross validation

Statistical evaluation criteria Annual outpatient visits Hospitalization Annual inpatient days

Median (Nagelkerke R2)

Model 2 22.62 1.61 0.0175

Model 2 + PNPLA3 rs738409 22.96 1.74 0.0138

Model 2 + TM6SF2 rs58542926 20.33 1.56 0.0218

Model 2 + PNPLA3 rs738409 + TM6SF2 rs58542926 22.73 1.99 0.0268

Median (root mean squared error) –

Model 2 8.70 8.111

Model 2 + PNPLA3 rs738409 8.78 7.121

Model 2 + TM6SF2 rs58542926 8.69 7.422

Model 2 + PNPLA3 rs738409 + TM6SF2 rs58542926 8.68 7.174

Median (absolute prediction error) –

Model 2 5.89 3.605

Model 2 + PNPLA3 rs738409 5.97 3.548

Model 2 + TM6SF2 rs58542926 6.01 3.565

Model 2 + PNPLA3 rs738409 + TM6SF2 rs58542926 6.07 3.594

Area under ROC curve (p-value for comparison to model 2) – –

Model 2 0.605

Model 2 + PNPLA3 rs738409 0.605 (0.846)

Model 2 + TM6SF2 rs58542926 0.606 (0.868)

Model 2 + PNPLA3 rs738409 + TM6SF2 rs58542926 0.606 (0.965)

Model 2: age, sex, school education, income, alcohol intake, smoking status, eGFR, Functional Comorbidity Index
ROC receiver operating characteristic
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