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Does adding risk-trends to survival models
improve in-hospital mortality predictions?
A cohort study
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Abstract

Background: Clinicians informally assess changes in patients’ status over time to prognosticate their outcomes.
The incorporation of trends in patient status into regression models could improve their ability to predict
outcomes. In this study, we used a unique approach to measure trends in patient hospital death risk and
determined whether the incorporation of these trend measures into a survival model improved the accuracy of its
risk predictions.

Methods: We included all adult inpatient hospitalizations between 1 April 2004 and 31 March 2009 at our
institution. We used the daily mortality risk scores from an existing time-dependent survival model to create five
trend indicators: absolute and relative percent change in the risk score from the previous day; absolute and relative
percent change in the risk score from the start of the trend; and number of days with a trend in the risk score. In
the derivation set, we determined which trend indicators were associated with time to death in hospital,
independent of the existing covariates. In the validation set, we compared the predictive performance of the
existing model with and without the trend indicators.

Results: Three trend indicators were independently associated with time to hospital mortality: the absolute change
in the risk score from the previous day; the absolute change in the risk score from the start of the trend; and the
number of consecutive days with a trend in the risk score. However, adding these trend indicators to the existing
model resulted in only small improvements in model discrimination and calibration.

Conclusions: We produced several indicators of trend in patient risk that were significantly associated with time to
hospital death independent of the model used to create them. In other survival models, our approach of
incorporating risk trends could be explored to improve their performance without the collection of additional data.

Background
Many physicians informally prognosticate patients by
determining changes in their health status over time.
Physicians assess whether patients are getting better,
getting worse, or staying the same by comparing their
current health state to that quantified from previous
assessments. Conclusions made from such assessments
are essential for gauging a patient’s present status and
predicting future outcomes.
Findings from several studies suggest that trends (i.e.

changes over time) in prognostic factors may play an

important role in predicting patient outcomes. In pros-
tate cancer patients, changes in health-related quality of
life measurements were associated with mortality [1]
and other clinical outcomes [2]. In chronic heart failure
patients, relative changes in the level of N-terminal pro-
brain natriuretic peptide [3] and changes in peak oxygen
consumption [4] were found to be associated with the
risk of death. In cardiac surgery patients, even small
changes in serum creatinine after surgery were found to
predict subsequent death independent of other estab-
lished perioperative risk factors [5]. In each of these stu-
dies, changes over time were measured prior to the
analytical baseline and were not measured during the
observation period. Continual measurement of changes
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in prognostic markers throughout the observation per-
iod could further improve risk prediction.
We recently derived and internally validated a time-

dependent survival model for hospital death that could
predict a patient’s daily mortality risk via estimation of
the hazard of death on each day [6]. The model
expanded on that of Escobar et al. [7] by using Cox
(instead of logistic) regression methods and including
time-dependent covariates. Our model had good discri-
mination (concordance probability = 0.879) and calibra-
tion (close agreement between the observed and
expected number of deaths in all risk strata over all
admission days). Our model’s commendable predictive
performance was largely due to the inclusion of time-
dependent covariates, whose values could be updated on
a daily basis [unpublished data, Wong et al.]. However,
our model used only the most recent covariate values to
predict a patient’s daily risk of hospital death and did
not consider trends over time in a patient’s covariate
values or risk of death prior to that day.
In this study, we incorporated indicators of trend in

patient risk into our time-dependent model. We first
calculated daily risk scores (summary indices of risk
based on a patient’s daily covariate values) from our
existing model and used these to generate several indi-
cators of trend in patient risk. We then re-estimated
our survival model including these trend indicators in
addition to the original model covariates. We did this
to determine whether prior changes in a patient’s risk
of hospital death were predictive of daily death risk
independent of the original model covariates. Finally,
we compared the predictive performance of the exist-
ing model with and without the trend indicators to
determine if these markers significantly improved the
model’s ability to predict daily risk of hospital
mortality.

Methods
Study design and setting
This was a cohort study including all inpatient hospitali-
zations that occurred between 1 April 2004 and 31
March 2009 at The Ottawa Hospital (TOH). TOH is a
tertiary-care teaching hospital in Ottawa, Canada that
consists of two inpatient campuses, operates within a
publicly funded health care system, and serves a popula-
tion of approximately 1.5 million people in Ottawa and
Eastern Ontario. All data in this study came from a
large repository of administrative and laboratory data
originating from the hospital’s major operational sys-
tems. We derived all models on a randomly selected
66% of hospitalizations and assessed their performance
on the remaining admissions. The unit of analysis in the
study was the hospitalization. This study was approved
by the TOH Research Ethics Board.

Study cohort
We used the same set of admissions as that used pre-
viously to derive and internally validate our time-depen-
dent survival model [6]. This cohort included all
inpatient admissions at our hospital during the study
period except those where the patient was younger than
15 years of age, transferred to or from another acute
care hospital, or hospitalized for obstetrical reasons.
Hospitalizations of patients transferred between TOH
campuses were linked and considered a single
admission.

Time-dependent survival model for hospital mortality
The time-dependent model for hospital mortality was
derived using Cox regression methods [6]. The model
included three time-independent covariates whose
values remained constant over the hospitalization:
patient age2 (expressed as a restricted cubic spline);
admission type (emergent surgical and non-surgical,
elective surgical and non-surgical); and the Elixhauser
score [8] to summarize the patient’s comorbidities at
admission.
The model also included four time-dependent covari-

ates whose values could be updated on daily basis:
intensive care unit (ICU) status - a binary variable
whose value was ‘1’ for patients in the ICU at the begin-
ning of the day (’0’ otherwise); alternative level of care
(ALC) status - a binary variable whose value was ‘1’ for
patients awaiting placement in a long-term care facility
and no longer receiving active medical care (’0’ other-
wise); the Procedure Independent Mortality Risk score
[unpublished data, van Walraven et al.] - a continuous
variable summarizing the performance of important
therapeutic procedures independently associated with
hospital death risk; and the number of days elapsed
since the last PIMR procedure (expressed as x-0.5). The
daily value of the PIMR score was equal to the score of
the most recently performed PIMR procedure (’0’ if no
PIMR procedure had been performed previously, or the
sum of the individual scores if more than one PIMR
procedure was performed on a given day).
Finally, the model included a number of interaction

terms between covariates and between specific time-
independent variables and a logarithmic transformation
of time. Details of this model are described elsewhere
[6].

Markers of daily death risk from the time-dependent
model
The time-dependent survival model could produce two
different, but related estimates of daily death risk. First,
the model could estimate a patient’s hazard of death on
each hospitalization day (Appendix). The hazard on a
given day represents the instantaneous rate of death on
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that day and can be interpreted as a patient’s risk of
death on that day conditional upon his or her survival
up to that day.
Second, the model could produce a daily “risk score”

by summing the product of each covariate value and
its regression coefficient from the model (i.e. Σbx) on
each hospitalization day. The risk score is related to
the hazard because the latter is calculated by multiply-
ing the exponential of the risk score (i.e. eΣbx) by the
baseline hazard estimate (i.e. the hazard for a patient
with all covariate values set to 0 or the reference
value).
In this study, we used the daily risk score instead of

the hazard to measure changes over time in a patient’s
daily death risk. This is because changes in the hazard
over time are due to changes in a patient’s covariate
values as well as fluctuations in the baseline hazard over
time. In contrast, changes in the daily risk score are
directly proportional to changes in a patient’s covariate
values and therefore more closely reflect changes in a
patient’s condition.

Indicators of trend in daily death risk
We created five time-dependent variables to quantify the
direction, degree, and duration of change in a patient’s
risk score prior to each hospitalization day. These vari-
ables (which we refer to as “trend indicators”) were: 1)
the absolute change in the risk score from the previous
day; 2) the relative percent change in the risk score
from the previous day; 3) the absolute change in the
risk score from the start of the trend; 4) the relative per-
cent change in the risk score from the start of the trend;
and 5) the number of consecutive days with a trend in
the risk score. We defined a trend as a period of time
over which the daily risk score increased or decreased
over consecutive days. We expressed all of the trend
indicators as continuous variables, using a positive or
negative number to indicate an increasing or decreasing
risk score, respectively. If there was no change in the
risk score or no previous risk score for comparison (i.e.
on the first day of the hospitalization), the value of all
trend indicators was set to 0.

Incorporation of trend indicators into the existing
time-dependent model
We first added the individual trend indicators
(expressed as time-dependent covariates) separately to
the existing time-dependent survival model to determine
whether each indicator was significantly associated with
time to hospital death (independent of the covariates in
the existing model) and whether the relative or absolute
change was more informative. We used the likelihood
ratio test to determine the statistical significance of each
trend indicator and compared the prognostic value of

the trend indicators using the value of Akaike’s Informa-
tion Criterion (AIC) for each model.
Next, we jointly added only those trend indicators that

were individually significant (based on the likelihood
ratio test) to the existing model. If the relative and abso-
lute change in the risk score from the previous day or
from the start of the trend were individually significant,
we only added the trend indicator with the greatest
prognostic value (i.e. that which produced the model
with the lowest AIC when added separately to the exist-
ing model) to avoid multi-collinearity. We then used the
methods of Sauerbrei and Royston [9] to identify the
best second-degree fractional polynomial transformation
for each trend indicator in the joint model and removed
any trend indicators that were no longer significant at a
= 0.05.
We derived all models using a randomly selected 66%

of hospitalizations (the derivation set). For all analyses,
we used the PHREG procedure in SAS, Version 9.2
(Cary, NC).

Performance of the existing model with and without
the trend indicators
In the remaining third of admissions (the validation set),
we compared the predictive performance of the existing
model with and without the trend indicators using four
different methods.
First, we measured the discrimination of each model

by calculating the concordance probability (also known
as the area under the ROC curve) with 95% confidence
intervals (CIs) [10]. The concordance probability repre-
sents the proportion of all informative pairs of patients
where the patient with the lower model-predicted risk
of death survives longer.
Second, we measured the calibration of each model

by dividing admissions into risk deciles on each admis-
sion day and calculating the number of observed and
expected deaths within each risk decile on each day.
We calculated the number of expected deaths by sum-
ming the hazard on that day of all patients within each
decile. We then summed the number of observed and
expected deaths within each risk decile across all
admission days to give the final estimate. In order to
directly compare the calibration of the two models, we
used the same risk decile groupings (based on the
daily risk score from the new model with the trend
indicators). To test for a significant difference between
the number of observed and expected events within
each decile, we calculated the p-value associated with
the standardized z-statistic [11].
Lastly, we calculated the Integrated Discrimination

Improvement (IDI) and the Net Reclassification
Improvement (NRI) [12] to quantify the improvement in
predictive performance attained by adding the trend
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covariates to the existing model. The IDI represents the
difference in discrimination slopes between the new and
existing model (where the discrimination slope is the
mean predicted risk of death among patients who died
minus the mean predicted risk of death among patients
who survived). The IDI can also be interpreted as the
change in average sensitivity minus the change in aver-
age (1-specificity). An IDI above zero indicates improved
discrimination with the new model. We calculated the
IDI with 95% CIs [12] on each admission day up to day
32 (the 95th percentile of observed length of stay) using
patients’ hazard estimate and vital status for that day.
We calculated the IDI on each admission day because
patients’ covariate values and hazard of death could
change daily.
The NRI quantifies the amount of correct reclassifica-

tion (i.e. upwards for events and downwards for non-
events) when comparing the predicted risk of death
from the new versus the existing model. Specifically, the
NRI is calculated as the proportion of correct minus
incorrect reclassifications among events (i.e. patients
who died) plus the proportion of correct minus incor-
rect reclassifications among non-events (i.e. patients
who were discharged alive). An NRI above zero indi-
cates improved risk prediction with the new model.
Because no established risk categories for hospital mor-
tality exist, we calculated a category-less NRI, where
upward reclassification was defined as a higher predicted

risk of death from the new model and downward reclas-
sification was defined as a lower predicted risk of death
from the new model [13]. As with the IDI, we calculated
the NRI with 95% CIs [12] on each of the first 32
admission days using patients’ hazard estimate and vital
status for that day.

Results
A total of 159 787 hospitalizations were used pre-
viously to derive and internally validate our existing
time-dependent survival model [6]. Characteristics of
the derivation and validation sets were very similar
(Table 1). Most commonly, hospitalizations were emer-
gent and non-surgical and involved elderly patients
(median age 61). At admission, most patients had few
or no comorbidities (median Elixhauser score of 0), a
fairly low acuity of illness (median LAPS of 4 in the
validation set), and a low estimated hazard of death
(median hazard of 0.00008, as predicted by the existing
time-dependent model). PIMR procedures were per-
formed during 28% of hospitalizations, most of which
were low-risk procedures (median PIMR score of 1).
Only 3% of hospitalizations had a PIMR procedure
performed on more than one day. Few patients were
admitted to the ICU (5%) or awaited placement (4%)
during the hospitalization. Most admissions were fairly
short (median length of stay of 5 days). Over the study
period, 5% of admissions ended in death.

Table 1 Characteristics of admissions included in the study

Characteristic Derivation Validation

Patients/Hospitalizations, n* 77294/106522 44300/53265

Deaths in-hospital, n (%) 5407 (5.1) 2640 (5.0)

Length of admission in days, median (IQR*) 5 (2-9) 5 (2-9)

Male, n (%) 55295 (51.9) 27807 (52.2)

Age at admission, median (IQR) 61 (48-75) 61 (48-74)

Admission type, n (%)

Emergent non-surgical 49862 (46.8) 24982 (46.9)

Emergent surgical 22534 (21.2) 11187 (21.0)

Elective non-surgical 14184 (13.3) 6970 (13.1)

Elective surgical 19942 (18.7) 10126 (19.0)

Elixhauser score, median (IQR) 0 (0-6) 0 (0-6)

LAPS* at admission, median (IQR) 5 (0-38) 4 (0-38)

Hazard of death at admission†, median (IQR) 0.0008 (0.0002- 0.0040) 0.0008 (0.0002- 0.0039)

At least 1 admission to the intensive care unit, n (%) 5433 (5.1) 2654 (5.0)

Change from active care to alternative level of care, n (%) 4830 (4.5) 2363 (4.4)

At least 1 PIMR* procedure, n (%) 29791 (28.0) 14923 (28.0)

PIMR score on day of procedure‡, median (IQR) 1 (-4 - 2) 1 (-4 - 2)

*n = number; IQR = interquartile range; LAPS = Laboratory-based Acute Physiology Score; PIMR = Procedure Independent Mortality Risk
†as predicted by the existing time-dependent survival model
‡among admissions where at least 1 PIMR procedure was performed. For admissions where PIMR procedures were performed on more than one day (3% of all
admissions), we used the PIMR score on the first procedure day to calculate the median (IQR) score. If more than one PIMR procedure was performed on the
procedure day, the scores of the individual procedures were summed. A negative PIMR score indicates a procedure associated with a decreased risk of hospital
death.
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The median value of the risk score from the existing
model increased over time, while the variability of the risk
score remained constant (Figure 1A). The median value of
each of the trend indicators was fairly stable over time
(Figure 1B-1F). Variability of the absolute change in the
risk score from the start of the trend remained stable over
time (Figure 1D). In contrast, variability increased over
time for the number of consecutive days with a trend in
the risk score (Figure 1B) and decreased over time for the
remaining trend indicators. Compared to the risk score
from the previous day, the risk score on days 2, 3, and 4
increased in 70%, 66%, and 65% of patients, respectively,
and decreased in 30%, 34% and 35% of patients, respec-
tively. The risk score did not stay the same for any patients
because the existing model included interaction terms
with time (which altered the risk score even if the covari-
ate values remained the same).
When we added each trend indicator separately to the

existing model, three trend indicators were independently

and strongly significant: the absolute change in the risk
score from the previous day; the absolute change in the
risk score from the start of the trend; and the number of
consecutive days with a trend in the risk score (Table 2).
Of these three covariates, the absolute change from the
start of trend had the greatest prognostic value because it
produced the model with the lowest AIC (Table 2).
These three trend indicators were still highly signifi-

cant (p < .0001) when added jointly to the existing
model using the following transformations: X3 + X3*log
(X) for the absolute change in the risk score from the
previous day; X0.5 + X0.5*log(X) for the absolute change
in the risk score from the start of the trend; and X-2 +
X-2*log(X) for the number of consecutive days with a
trend in the risk score (we first shifted all original values
up by the minimum observed value to ensure the values
were greater than zero). Moreover, all of the original
covariates in the existing model remained statistically
significant in the presence of these trend indicators.

Figure 1 Distribution of the risk score from the existing time-dependent survival model and the trend indicators over time. The graphs
above show the value of the risk score from the existing time-dependent survival model (Figure 1A) and the five trend indicators (Figure 1B-1F)
at the 5th, 25th, 50th, 75th, and 95th percentile of observed values on each of the first 14 days of admission. The value of each trend indicator is
positive or negative for an increase or decrease in the risk score, respectively. TD = number of consecutive days with a trend in the risk score;
AC-PD = absolute change in the risk score from the previous day; AC-ST = absolute change in the risk score from the start of the trend; RC-PD
= relative percent change in the risk score from the previous day; RC-ST = relative percent change in the risk score from the start of the trend.
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In the final model, the trend indicators notably chan-
ged the predicted risk of death in hospital. The adjusted
hazard ratio increased as the number of days with an
increasing trend in the risk score increased (Figure 2A,
solid line), the absolute change in the risk score from
the previous day increased (Figure 2B, solid line), and
the absolute change in the risk score from the start of
the trend increased (Figure 2C, solid line). The adjusted
hazard ratio decreased as the number of days with a
decreasing trend in the risk score increased (Figure 2A,
dotted line) and as the absolute change in the risk score
from the previous day decreased (Figure 2B, dotted
line). Contrary to our expectations, the hazard ratio
increased for larger decreases in the risk score from the
start of the trend (Figure 2C, dotted line).
However, the addition of the trend indicators to the

existing model produced only a marginal, non-signifi-
cant improvement in the concordance probability. The
concordance probability of the existing model was
0.8790 (95% CI 0.8718-0.8861) compared to 0.8801
(0.8730-0.8873) for the new model, representing an
absolute increase of only 0.11%.
The calibration of both models was excellent. Within

each risk decile, the number of deaths predicted by each
model was not significantly different from the number
of observed deaths (Table 3). However, the predictions
from the model that incorporated trend indicators were
not noticeably better. This model predicted slightly clo-
ser to the number of observed deaths in six risk deciles,
while the existing model (without trend indicators) pre-
dicted slightly closer in the other four deciles (Table 3).
Overall, the model incorporating trend indicators pre-
dicted closer to the total number of deaths, but only by
12 deaths compared to the number of deaths predicted
by the existing model (Table 3 last row).
The IDI suggested that the addition of the trend indi-

cators did not significantly improve the overall discrimi-
nation of the existing model. The IDI was not
statistically significant on 29 out of 32 days (Figure 3).

On days 3 and 11, the IDI was 0.006 and 0.003, respec-
tively, and was statistically significant on both days (sug-
gesting improvement in overall discrimination).
However, on day 1, the IDI was below zero (-0.003) and
statistically significant (suggesting worse overall discrimi-
nation). On day 2, the IDI was particularly negative
(-0.043), but not statistically significant.
The NRI also suggested that the addition of the trend

indicators did not significantly improve the daily perfor-
mance of the existing model. The NRI was not statisti-
cally significant on 29 days (Figure 4). On days 2, 3, and
16, however, the NRI was significantly above zero, with
a value of 0.32, 0.16, and 0.33, respectively (Figure 4).

Discussion
In this study, we determined if changes over time in a
patient’s health status were predictive of a patient’s
daily risk of hospital death independent of his or her
current health status. To do this, we first used an
existing time-dependent survival model for hospital
mortality to produce summary indices of hospital
death risk (i.e. risk scores) on each day of a patient’s
hospitalization. We then used these risk scores to gen-
erate indicators of trend (change over time) in a
patient’s risk of hospital death. Finally, we added these
trend indicators to the existing survival model and
determined whether their inclusion improved the mod-
el’s predictive ability.
We found that three trend indicators (the absolute

change in the risk score from the previous day; the
absolute change in the risk score from the start of the
trend; and the number of consecutive days with a trend
in the risk score) were significantly and independently
associated with the risk of hospital mortality. Moreover,
when these trend indicators were added to the existing
model, the original covariates remained statistically sig-
nificant. However, we found that adding these trend
indicators to the existing survival model did not notice-
ably improve its predictive performance.

Table 2 Significance of each trend indicator when added separately to the existing time-dependent model

Trend indicator added to the existing model‡ -2 log likelihood
(46389.92†)

p-value* AIC**
(46445.92†)

Absolute change in the risk score from the previous day 46340.45 < .0001 46398.45

Absolute change in the risk score from the start of the trend 46303.56 < .0001 46361.56

Relative change in the risk score from the previous day 46389.70 0.6386 46447.70

Relative change in the risk score from the start of the trend 46389.87 0.8361 46447.87

Number of consecutive days with a trend in the risk score 46377.89 0.0005 46435.89
†for the existing time-dependent model with no trend indicators

*p-value from the likelihood ratio test comparing the existing time-dependent model with and without the trend indicator

**Akaike’s Information Criterion
‡For all trend indicators, the value was expressed as a positive or negative number for an increase or decrease in the risk score, respectively. We defined a trend
as a period of time over which the risk score consistently increased or decreased. If there was no change in the risk score or no previous risk score for
comparison (i.e. on the first day of the hospitalization), the value of all trend indicators was set to 0.
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We believe that the approach we used to measure
changes over time in patient risk is unique and efficient.
By simply using the daily risk scores produced by the
existing time-dependent survival model, we were able to
create a number of statistically significant trend indica-
tors without having to collect additional patient data.
Further studies should determine whether our approach
is generalizable to other survival models that include
time-dependent covariates.
The effect of larger absolute decreases in the risk score

from the start of the trend was noteworthy (Figure 2C,
dotted line). The model predicted a higher hazard of
death for larger absolute decreases in the risk score over
time. This suggests that patients with larger decreases in
their risk score over time had worse outcomes than
those with smaller decreases in their risk score. This

observation could be due to sicker patients having
higher risk scores to begin with and therefore experien-
cing larger decreases in their risk score over time. In
contrast, relatively healthier patients may experience
only small decreases in their risk score over time
because their risk score is lower to begin with.
Several reasons could explain why the trend indicators

were highly statistically significant (p < .0001) but did
not notably improve the predictive performance of the
existing model. Since the performance of the existing
model was already very good, we needed new covariates
with a very large and independent association with hos-
pital mortality in order to produce noticeable improve-
ments in the model’s performance [12]. However, the
magnitude of association between the trend indicators
and the risk of hospital death was probably only

Figure 2 Effect of the trend indicators on the hazard of death in hospital. The graphs above show the multiplicative effect of different
values of each trend indicator on the hazard of death (compared to the hazard for a patient with the minimum absolute value of the trend
indicator). To create the graphs, we held the value of all covariates constant (except the trend indicator of interest) and calculated the risk score
when the value of the trend indicator of interest was allowed to vary from a minimum absolute value up to the 95th percentile of observed
values for an increasing trend (black solid line) or down to the 5th percentile of observed values for a decreasing trend (grey dotted line). We
calculated the hazard ratios by exponentiating (i.e. ex) the difference between each risk score and the risk score for the minimum absolute value
of the trend indicator.
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moderate or even small since most hospitalizations were
short (median stay of five days) and involved relatively
healthy patients, thereby making it unlikely that the risk
score would change drastically over most hospitaliza-
tions. Moreover, the trend indicators were likely highly
statistically significant because of our large study size,
which can make moderate or even small associations
statistically significant.
While our approach of using model-generated risk

scores to measure trends in patient health status is
efficient and relatively simple, it is computationally

intensive and may not appeal to those who find it too
challenging or laborious. For example, even the calcu-
lation of the risk score itself could be challenging in
cases where the existing model contains a large num-
ber of predictors and/or interaction terms. Another
disadvantage of our approach is that it cannot reliably
measure trends at the very start of the observation
period (since there are no previous risk scores for
comparison). On day 1, because there were no pre-
vious risk scores available for all admissions, we set
the value of the trend indicators to zero (assuming

Table 3 Calibration of the existing time-dependent model with and without the trend indicators

Existing model with trend indicators Existing model without trend indicators

Risk Decile # observed deaths # expected deaths z-score p # expected deaths z-score p

1 5 4.31 0.3298 0.7415 5.37 0.1609 0.8722

2 9 12.75 1.0498 0.2938 13.68 1.2664 0.2054

3 21 24.74 0.7527 0.4517 26.03 0.9853 0.3245

4 36 43.45 1.1298 0.2586 44.59 1.2861 0.1984

5 54 68.90 1.7952 0.0726 69.50 1.8597 0.0629

6 103 108.72 0.5482 0.5836 109.97 0.6646 0.5063

7 174 171.65 0.1796 0.8575 173.49 0.0386 0.9692

8 260 285.35 1.5008 0.1334 285.02 1.4821 0.1383

9 453 474.99 1.0090 0.3130 478.93 1.1850 0.2360

10 1525 1496.72 0.7309 0.4649 1497.23 0.7177 0.4729

Total 2640 2691.59 0.9943 0.3201 2703.82 1.2274 0.2197

We divided the validation admissions into risk deciles on each admission day (based on the patient’s risk score for that day from the model with the trend
indicators), determined the number of observed and expected deaths from each model within each risk decile on each day (where the daily number of expected
deaths was equal to the sum of the daily hazard of all patients within each decile), and finally summed the number of observed and expected deaths within
each risk decile across all admission days (shown above). We tested for a significant difference between the observed and expected number of deaths within
each decile by calculating the p-value associated with standardized z-statistic, where z = (observed-expected)/(√expected).

Figure 3 Integrated discrimination improvement (IDI) with 95%
confidence intervals (CI) comparing the existing model with
and without the trend indicators. On each of the first 32
admission days (the 95th percentile of observed length of stay), we
calculated the IDI with 95% CIs [12] using patients’ estimated hazard
of death from each model and vital status for that day. An IDI
above 0 suggests that the addition of the trend indicators to the
existing model improved overall model discrimination.

Figure 4 Net reclassification improvement (NRI) with 95%
confidence intervals (CIs) comparing the existing model with
and without the trend indicators. On each of the first 32
admission days (the 95th percentile of observed length of stay), we
calculated the NRI with 95% CIs [12] using patients’ estimated
hazard of death from each model and vital status for that day. An
NRI above 0 indicates improved risk prediction with the new model
containing the trend indicators.
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neither an improving nor deteriorating health status).
This may have been inaccurate for some patients and
may have adversely affected the model fit early on, as
suggested by the negative value of the IDI on days 1
and 2 (Figure 3). Therefore, we suggest that models
including trend indicators be used for risk prediction
only once patients have been observed long enough
to measure a trend in their risk scores. In our case,
just a few days may be sufficient since the value of
the IDI was positive and statistically significant on
day 3 (Figure 3).

Conclusions
In this study, we demonstrate a unique and efficient
approach to measure trends in patient risk over time.
We used risk scores calculated on a daily basis from an
existing time-dependent survival model for hospital
mortality to create several trend indicator variables.
When added to the existing model, these trend indica-
tors were significantly associated with the risk of hospi-
tal death independent of the original variables in the
existing model. However, the clinical significance of
these trend indicators was minimal because they did not
noticeably improve the predictive performance of the
existing model. Future research should determine
whether the approach we present in this study is gener-
alizable to other time-dependent survival models and
can significantly improve the performance of survival
models with much longer time horizons where larger
changes in patient risk are more likely.

Appendix: Calculation of the daily hazard of
death from a time-dependent Cox model
The hazard of death at time t represents the instanta-
neous rate of death at t and can be interpreted as the
risk of death at t conditional upon survival to t. The
hazard of death can be estimated from a Cox regression
model using the formula:

h (t) =
(
exp

[∑
βx

])
∗ h0 (t) ,

where h(t) is the estimated hazard of death on day t,
Σbx is the “risk score” (i.e. the sum of the product of
each covariate value and its parameter estimate), and h0
(t) is the estimated baseline hazard of death on day t.
To estimate a patient’s hazard of death on each hospi-

talization day with our time-dependent Cox model, we
used SAS to obtain daily estimates of the baseline
hazard function and then multiplied the baseline hazard
estimate for each day by the patient’s “risk score” from
the model for that day. Note that a patient’s risk score
could change over the hospitalization because the model
included time-dependent covariates.
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